awk过滤数据

awk -F”\\\\t” ‘$2==”mob” && $6>=1000{print $0}’  /home/hdp-guanggao/huangqiang/tab_stats/load_search_index_alert_daily_stat

2017-01-16 mob 1 NULL NULL 13830 0 0 5609 5743.577000000127 9931.434000000025
2017-01-16 mob 1 100 137 11010 11010 24841 739 955.905000000001 1511.187999999999
2017-01-16 mob 1 100 209 10756 10756 24192 759 890.9829000000002 1451.3469999999988
2017-01-16 mob 1 36 276 174784 27841 47541 1333 1073.7799999999966 1797.8559999999936
2017-01-16 mob 1 99 NULL 1044051 177367 380066 8369 7046.894000000293 11722.183999999928
2017-01-16 mob 1 99 0 63728 10888 23481 497 383.7400000000007 685.7949999999996
2017-01-16 mob 1 99 141 9287 1560 3351 68 49.469999999999985 75.745
2017-01-16 mob 1 99 99 9241 1552 3229 87 74.70999999999997 113.146

 

详细使用参考

http://502245466.blog.51cto.com/7559397/1288472

linux上使用flock来调用程序

在使用linux的crontab定时调用程序时会经常判断程序是否已经启用,之前是直接在程序中判断程序是否启动。后来找到一种比较简洁的方法flock,它是一种文件锁的方式。

[adadmin@s11 ~]$ flock
flock (util-linux-ng 2.17.2)
Usage: flock [-sxun][-w #] fd#
flock [-sxon][-w #] file [-c] command…
flock [-sxon][-w #] directory [-c] command…
-s –shared Get a shared lock
-x –exclusive Get an exclusive lock
-u –unlock Remove a lock
-n –nonblock Fail rather than wait
-w –timeout Wait for a limited amount of time
-o –close Close file descriptor before running command
-c –command Run a single command string through the shell
-h –help Display this text
-V –version Display version

 

使用如下:

先创建一个文件

touch test_flock.lock

调用如下(以python test_flock.py为示例)

flock -nx test_flock.lock python test_flock.py

 

spark mllib训练模型后如何做在线预测

最近在想一个问题,使用spark mllib训练后的模型如何做一个在线预测的服务? 毕竟mllib只提供离线的训练和预测。想到大概有四种方法:

1. 使用spark streaming + kafka

直接使用spark streaming加载训练好的模型,然后通过从kafka上读取特征来预测数据,并将预测结果写回kafka中供客户端获取到。

2. spark + grpc

通过将spark mllib中的predict函数做成rpc service的形式,具体参考:

https://scalapb.github.io/grpc.html

3. spark + spray

通过spark mllib中的predict函数做restful的形式来预测。

4. spark + python flask

通过python调用spark mllib训练好的模型,借助flash提供接口

5. spark + python grpc

通过python grpc调用spark mllib训练好的模型,提供其它语言rpc接口

 

 

目前方法1, 4, 5是可行, 方法2,3并没有实际实现的经验,还需再探索。

python调用tensorflow出错

jerry@ubuntu:~/serving$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type “help”, “copyright”, “credits” or “license” for more information.
>>> import tensorflow
RuntimeError: module compiled against API version 0xa but this version of numpy is 0x9
Traceback (most recent call last):
File “<stdin>”, line 1, in <module>
File “/usr/local/lib/python2.7/dist-packages/tensorflow/__init__.py”, line 23, in <module>
from tensorflow.python import *
File “/usr/local/lib/python2.7/dist-packages/tensorflow/python/__init__.py”, line 49, in <module>
from tensorflow.python import pywrap_tensorflow
File “/usr/local/lib/python2.7/dist-packages/tensorflow/python/pywrap_tensorflow.py”, line 28, in <module>
_pywrap_tensorflow = swig_import_helper()
File “/usr/local/lib/python2.7/dist-packages/tensorflow/python/pywrap_tensorflow.py”, line 24, in swig_import_helper
_mod = imp.load_module(‘_pywrap_tensorflow’, fp, pathname, description)
ImportError: numpy.core.multiarray failed to import

 

升级numpy至最新版本

sudo pip install numpy –upgrade

sudo mv  /usr/lib/python2.7/dist-packages/numpy /usr/lib/python2.7/dist-packages/numpy_old

 

查看新的numpy路径

import numpy

numpy.__path__

pip安装包太慢

最近使用pip安装包发现非常之慢,估计是gfw搞的鬼。没办法只好使用国内的镜像。

vi ~/.pip/pip.conf

[global]
index-url = http://pypi.douban.com/simple

或者

[global]
trusted-host = mirrors.aliyun.com
index-url = http://mirrors.aliyun.com/pypi/simple

python日期操作

 

from datetime import datetime,date

dayOfWeek = datetime.now().weekday()
print dayOfWeek

******************************************************************

import time
import datetime

dtime = datetime.datetime.now()
ans_time = time.mktime(dtime.timetuple())
unix_ts = 1439111214.0
time = datetime.datetime.fromtimestamp(unix_ts)