Oracle : exec dbms_lock.sleep(10);
Sql Server : waitfor delay ’00:00:10′;
PostgreSQL : select pg_sleep(10);
MySQL : select sleep(10);
量化自我和极简主义的窝藏点
Oracle : exec dbms_lock.sleep(10);
Sql Server : waitfor delay ’00:00:10′;
PostgreSQL : select pg_sleep(10);
MySQL : select sleep(10);
不停的ctrl+v, ctrl+c,手都酸疼。 从别人家网址上迁移到自己的博客网址是多么费体力的一件事呀。慢慢弄吧
环境: Windows 7, RStudio
1. 进入RStudio,输入安装
install.packages("h2o", repos=(c("http://s3.amazonaws.com/h2o-release/h2o/rel-kahan/5/R", getOption("repos"))))
2. 加装包,启动h2o本地环境
library(h2o)
载入需要的程辑包:rjson 载入需要的程辑包:statmod 载入需要的程辑包:tools ---------------------------------------------------------------------- Your next step is to start H2O and get a connection object (named 'localH2O', for example): > localH2O = h2o.init() For H2O package documentation, first call init() and then ask for help: > localH2O = h2o.init() > ??h2o To stop H2O you must explicitly call shutdown (either from R, as shown here, or from the Web UI): > h2o.shutdown(localH2O) After starting H2O, you can use the Web UI at http://localhost:54321 For more information visit http://docs.0xdata.com ---------------------------------------------------------------------- 载入程辑包:‘h2o’ 下列对象被屏蔽了from ‘package:base’: max, min, sum Warning messages: 1: 程辑包‘h2o’是用R版本3.0.3 来建造的 2: 程辑包‘rjson’是用R版本3.0.3 来建造的 3: 程辑包‘statmod’是用R版本3.0.3 来建造的
H2O is not running yet, starting it now…
Performing one-time download of h2o.jar from
http://s3.amazonaws.com/h2o-release/h2o/rel-knuth/11/Rjar/h2o.jar
(This could take a few minutes, please be patient…)
Note: In case of errors look at the following log files:
C:/TMP/h2o_huangqiang01_started_from_r.out
C:/TMP/h2o_huangqiang01_started_from_r.err
java version “1.7.0_25”
Java(TM) SE Runtime Environment (build 1.7.0_25-b17)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)
Successfully connected to http://127.0.0.1:54321
R is connected to H2O cluster:
H2O cluster uptime: 3 seconds 408 milliseconds
H2O cluster version: 2.4.3.11
H2O cluster name: H2O_started_from_R
H2O cluster total nodes: 1
H2O cluster total memory: 0.96 GB
H2O cluster total cores: 4
H2O cluster healthy: TRUE
demo(h2o.glm)
4. 训练minist数据
下载 Train Dataset: http://www.pjreddie.com/media/files/mnist_train.csv
下载 Test Dataset: http://www.pjreddie.com/media/files/mnist_test.csv
res <- data.frame(Training = NA, Test = NA, Duration = NA)
#加载数据到h2o
train_h2o <- h2o.importFile(localH2O, path = “C:/Users/jerry/Downloads/mnist_train.csv”)
test_h2o <- h2o.importFile(localH2O, path = “C:/Users/jerry/Downloads/mnist_test.csv”)
y_train <- as.factor(as.matrix(train_h2o[, 1]))
y_test <- as.factor(as.matrix(test_h2o[, 1]))
##训练模型要很长一段时间,多个cpu使用率几乎是100%,风扇狂响。最后一行有相应的进度条可查看
model <- h2o.deeplearning(x = 2:785, # column numbers for predictors
y = 1, # column number for label
data = train_h2o,
activation = “Tanh”,
balance_classes = TRUE,
hidden = c(100, 100, 100), ## three hidden layers
epochs = 100)
#输出模型结果
> model
IP Address: localhost
Port : 54321
Parsed Data Key: mnist_train.hex
Deep Learning Model Key: DeepLearning_9c7831f93efb58b38c3fa08cb17d4e4e
Training classification error: 0
Training mean square error: Inf
Validation classification error: 0
Validation square error: Inf
Confusion matrix:
Reported on mnist_train.hex
Predicted
Actual 0 1 2 3 4 5 6 7 8 9 Error
0 5923 0 0 0 0 0 0 0 0 0 0
1 0 6742 0 0 0 0 0 0 0 0 0
2 0 0 5958 0 0 0 0 0 0 0 0
3 0 0 0 6131 0 0 0 0 0 0 0
4 0 0 0 0 5842 0 0 0 0 0 0
5 0 0 0 0 0 5421 0 0 0 0 0
6 0 0 0 0 0 0 5918 0 0 0 0
7 0 0 0 0 0 0 0 6265 0 0 0
8 0 0 0 0 0 0 0 0 5851 0 0
9 0 0 0 0 0 0 0 0 0 5949 0
Totals 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 0
>
> str(model)
## 评介性能
yhat_train <- h2o.predict(model, train_h2o)$predict
yhat_train <- as.factor(as.matrix(yhat_train))
yhat_test <- h2o.predict(model, test_h2o)$predict
yhat_test <- as.factor(as.matrix(yhat_test))
查看前100条预测与实际的数据相比较
> y_test[1:100]
[1] 7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4 9 6 6 5 4 0 7 4 0 1 3 1 3 4 7 2 7 1 2 1 1 7 4 2 3 5 1 2 4 4 6 3 5 5 6 0 4 1 9 5 7 8 9 3 7 4
[67] 6 4 3 0 7 0 2 9 1 7 3 2 9 7 7 6 2 7 8 4 7 3 6 1 3 6 9 3 1 4 1 7 6 9
Levels: 0 1 2 3 4 5 6 7 8 9
>
> yhat_test[1:100]
[1] 7 2 1 0 4 1 8 9 4 9 0 6 9 0 1 5 9 7 3 4 9 6 6 5 4 0 7 4 0 1 3 1 3 4 7 2 7 1 2 1 1 7 4 2 3 5 1 2 4 4 6 3 5 5 6 0 4 1 9 5 7 8 9 3 7 4
[67] 6 4 3 0 7 0 2 9 1 7 3 2 9 7 7 6 2 7 8 4 7 3 6 1 3 6 9 3 1 4 1 7 6 9
Levels: 0 1 2 3 4 5 6 7 8 9
效果还可以
## 查看并保存结果
library(caret)
res[1, 1] <- round(h2o.confusionMatrix(yhat_train, y_train)$overall[1], 4)
res[1, 2] <- round(h2o.confusionMatrix(yhat_test, y_test)$overall[1], 4)
print(res)
(注意:程辑包‘h2o’是用R版本3.0.1 来建造的 , 因此R base应该升级到相应版本, 不然就出现以下报错:
> library(h2o)
Error in eval(expr, envir, enclos) : 没有”.getNamespace”这个函数
此外: 警告信息:
程辑包‘h2o’是用R版本3.0.1 来建造的
Error : 程辑包‘h2o’里的R写碼载入失败
错误: ‘h2o’程辑包/名字空间载入失败
解决方法: 下载http://cran.r-project.org/bin/windows/base/old/3.0.1/R-3.0.1-win.exe 并安装, 更新其它包的 update.packages(ask=FALSE, checkBuilt = TRUE)
)
环境: windows 7, R 3.0.1
安装h2o的时候发现无法在线安装这两个包rjson, RCurl,因此把这两个放在迅雷上下载到本地安装
http://ftp.ctex.org/mirrors/CRAN/bin/windows/contrib/3.0/rjson_0.2.14.zip
http://ftp.ctex.org/mirrors/CRAN/bin/windows/contrib/3.0/RCurl_1.95-4.3.zip
环境: windows 7, R 3.0.1
安装h2o的时候发现无法在线安装这两个包rjson, RCurl,因此把这两个放在迅雷上下载到本地安装
http://ftp.ctex.org/mirrors/CRAN/bin/windows/contrib/3.0/rjson_0.2.14.zip
http://ftp.ctex.org/mirrors/CRAN/bin/windows/contrib/3.0/RCurl_1.95-4.3.zip
Error : .onLoad failed in loadNamespace() for 'rJava', details: call: inDL(x, as.logical(local), as.logical(now), ...) error: 无法载入共享目标对象‘D:/program/R/R-2.15.1/library/rJava/libs/x64/rJava.dll’:: LoadLibrary failure: %1 不是有效的 Win32 应用程序。 此外: 警告信息: 程辑包‘rJava’是用R版本2.15.3 来建造的 错误: ‘rJava’程辑包/名字空间载入失败,
问题描述: R查找dll文件有问题
解决方法: 添加C:\\Program Files\\Java\\jdk1.6.0_10\\jre\\bin\\server环境变量path,即将jvm.dll这个库加入。 然后重启RStudio
R version 2.15.1 (2012-06-22) Platform. x86_64-pc-mingw32/x64 (64-bit) locale: [1] LC_COLLATE=Chinese (Simplified)_People's Republic of China.936 [2] LC_CTYPE=Chinese (Simplified)_People's Republic of China.936 [3] LC_MONETARY=Chinese (Simplified)_People's Republic of China.936 [4] LC_NUMERIC=C [5] LC_TIME=Chinese (Simplified)_People's Republic of China.936 attached base packages: [1] stats graphics grDevices utils datasets methods [7] base other attached packages: [1] XML_3.95-0.1 loaded via a namespace (and not attached): [1] tools_2.15.1
这个与操作相关, 可以尝试更改Sys.setlocale("LC_CTYPE", "UTF-8"),但报“操作系统报告说无法执行将本地化设成"UTF-8"的请求”。
在Ubuntu中使用RStudio却能正确显示中文,查看sessionInfo()
R version 2.14.1 (2011-12-22) Platform. x86_64-pc-linux-gnu (64-bit) locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=C [4] LC_COLLATE=C LC_MONETARY=C LC_MESSAGES=C [7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C [10] LC_TELEPHONE=C LC_MEASUREMENT=C ""LC_IDENTIFICATION"" =C attached base packages: [1] stats graphics grDevices utils datasets methods [7] base loaded via a namespace (and not attached): [1] tools_2.14.1
造成的原因推测是XML包编码方式与操作系统的字符编码相关。 有高手知道的具体原因的请帮忙解答下。
环境: Centos 5.6 , Python
语句如下:
[os.path.split(f)[1].split(“.”) for f in os.listdir(“/u01/app/bietl/code/bdhi”) if os.path.split(f)[1].split(“.”)[1] == ‘dat’]
/u01/app/bietl/code/bdhi — 代表目录名
dat — 代表后缀名
这两个参数可以按你想要的结果传入。
环境: Ubuntu 12.4
>>> import numpy
Traceback (most recent call last):
File “<stdin>”, line 1, in <module>
File “/usr/lib/python2.7/dist-packages/numpy/__init__.py”, line 137, in <module>
import add_newdocs
File “/usr/lib/python2.7/dist-packages/numpy/add_newdocs.py”, line 9, in <module>
from numpy.lib import add_newdoc
File “/usr/lib/python2.7/dist-packages/numpy/lib/__init__.py”, line 13, in <module>
from polynomial import *
File “/usr/lib/python2.7/dist-packages/numpy/lib/polynomial.py”, line 11, in <module>
import numpy.core.numeric as NX
AttributeError: ‘module’ object has no attribute ‘core’
>>>
解决方法: sudo apt-get remove libopenblas-base